

Calorimeter Assembly and Tests

Bernard Phlips Naval Research Laboratory

Mechanical Concept

Paris Cal Mtg. 14-16 Feb 2000

Detail of Concept

Paris Cal Mtg. 14-16 Feb 2000

- -Top and bottom are honeycomb with face-sheets
- -Inner side-wall holds top and bottom
- -Inner side-wall is 1 mm Al
- -Outer wall is 1 mm Al
- -Electronics is held between inner and outer side-walls
- -Rubber sheet above and below each layer
- -Al shim between layers of rubber

Hodoscopic Stacking

Paris Cal Mtg. 14-16 Feb 2000

Press and Alignment Fixture

Paris Cal Mtg. 14-16 Feb 2000

- -Real Stacking done in press
- -Use alignment plates bolted to base plate

- -Shim between logs if needed
- -Adjust Al shim as needed
- -Process took < 1 day

Loading of Stack

Paris Cal Mtg. 14-16 Feb 2000

- Compress to desired pressure
- Put on side-walls
- fastened with 10 screws on top and bottom of each wall
- Take off pressure
- Take off top of press

Stack under Compression

Paris Cal Mtg. 14-16 Feb 2000

- -Pin diodes and contacts stick out through Al
- -Ready for front end electronics board

FEE Board Location

Paris Cal Mtg. 14-16 Feb 2000

- Inner and outer wall connected by posts
- Inner wall Strengthens assembly
 - Could hold entire layer if slipping
 - Holds electronics boards
 - Shields electronics boards
 - Connection between diode and PC board flexible
 - =>de-couple from thermal expansion of CsI crystals

FPGA Board Location

Paris Cal Mtg. 14-16 Feb 2000

- Need additional board between for FEE board and data acquisition system
- -1 FPGA board per side
- all 4 stacked under calorimeter bottom
- diode bias internal (battery)
- only umbilical between calorimeter and DAQ

- One board per side
- Supports 40 crystals
- Supports 80 diodes
- Has 40 ASICs with amps
- Has 10 ASICs with V/I
- -16 DACs to set levels
- Has 80 preamps
- Has 240 shapers
- Different ADCs in X,Y
- -1400 components per board

Naval Research Lab Washington DC

Holes in FEE Board

Paris Cal Mtg. 14-16 Feb 2000

- Holes needed for signals from PIN diode and posts
- Think before choosing orientation of diode on crystal
- -Might NOT want mirror image epoxy of diodes on crystal

FPGA board

Paris Cal Mtg. 14-16 Feb 2000

- FPGAs too big for FEE board
- Board has 2 Xilinx FPGAs
- One does data readout data formatting
- Other does command control trigger housekeeping
- -Might want to keep 2nd board concept for flight

Partially Assembled Calorimeter

Paris Cal Mtg. 14-16 Feb 2000

Assembled Calorimeter

Paris Cal Mtg. 14-16 Feb 2000

- 16 trays of silicon (32 planes of silicon)
- 8 trays fully populated
- -mix 4 and 6 inch material
- -bottom 2 no Pb converter
- -top 10 have 2.5 % Pb
- -next 4 have 25% Pb
- -200 micron resolution
- -~350 micron thick Si

Naval Research Lab Washington DC

Calorimeter, Tracker and ACD

Paris Cal Mtg. 14-16 Feb 2000

On-Line Displays

Paris Cal Mtg. 14-16 Feb 2000

Display one range or all four ranges.

For ~12 positrons in a pulse from 20 GeV beam:

- lowest range saturated
- -highest range not saturated
- -both ends displayed

Multi-Particle Energy Spectra

Paris Cal Mtg. 14-16 Feb 2000

Run self-triggered:

-see muons inlow energy range-see multiplicity ofparticlesup to 600 GeV

Total Energy

Paris Cal Mtg. 14-16 Feb 2000

Positron Runs:

- < 1 particle per pulse
- 2 GeV, 5 GeV, 20 GeV beams
- Normal incidence
- -Total energy deposited, not corrected

Corrected Energy

Paris Cal Mtg. 14-16 Feb 2000

- Fit shower profile
- Derive improved energy measurement
- Layer 5 not included
- Will improve with layer 5
- Normal incidence
- All other angles better

Light Tapering

Paris Cal Mtg. 14-16 Feb 2000

- ☐ Mapping the array of CsI bars.
- ☐ For example:
 - Beam is 2 GeV e+.
 - 10 runs on 3.1-cm centers.
 - Crystal in 2nd layer from top.
- ☐ Light asymmetry map.

$$\Lambda = (R - L) / (R + L)$$

- Slope ~ 2% per cm.
- Tracker positions:
 - Simple mean of hits in last x,y.
 - Sensitive to outliers.
- ☐ Analysis performed on hbooks.

Calorimeter Vibration Tests

Bernard Phlips
Naval Research Laboratory

Vibration Test Setup

Paris Cal Mtg. 14-16 Feb 2000

- made copy of calorimeter
- fake logs, real mass
- tests performed at NRL
- used vertical shaker for longitudinal tests
- used horizontal shaker for transverse tests
- test fixture simulated mounting configuration for flight:4 points on bottom and
 - 4 points on botto

4 points on top

Test Fixture

Paris Cal Mtg. 14-16 Feb 2000

Sensors

Paris Cal Mtg. 14-16 Feb 2000

- Used >30 accelerometers

-mounted on: logs

inside walls outside walls top plate

fixture

Random Vibration Specifications

Paris Cal Mtg. 14-16 Feb 2000

Frequency (Hz)	ASD Level (g ² / _{Hz}) 0.01		
20			
20 to 50	+3.92 dB/oct		
50 to 800	0.033		
800 to 2000	-3.92 dB/oct		
2000	0.01		
6.81	grms		

Random Transverse Vibration

Paris Cal Mtg. 14-16 Feb 2000

Horizontal transverse transfer functions:

- -logs do not strike side walls
- -fundamental frequency ~ 90 Hz
- -middle layers move more
- -> 600Hz features due to fixture

Modal Analysis

Paris Cal Mtg. 14-16 Feb 2000

Blue line is Experimental Transfer function and green line is estimated transfer function

Modal Analysis Results

Paris Cal Mtg. 14-16 Feb 2000

Mode	MATLAB	Experimental		
	Frequency	Frequency	Damping Ratio	Quality Factor
1st Transverse Shear	88.1 Hz	91 Hz	9.3%	5,4
2 nd Transverse Shear	172.5 Hz	187 Hz	1.9%	26.3
3rd Transverse Shear	251.2 Hz	292 Hz	6.1%	8.2

Mode	MATLAB	Experimental		
	Frequency	Frequency	Damping Ratio	Quality Factor
1st Vertical (Accordion)	305.4 Hz	218.5 Hz	4.1%	12.2
2nd Vertical (Accordion)	598.9 Hz	524 Hz	1.4%	35.7

Naval Research Lab Washington DC

Sine Burst Test

Paris Cal Mtg. 14-16 Feb 2000

Specification:

Test Axis	Dwell Frequency	Acceleration Level	Duration 5 cycles	
Transverse	9.9 Hz	±5.0 g's _{0-pk}		
Thrust	12.7 Hz	±8.25 g's _{0-pk}	5 cycles	

Goals: -Validate design and workmanship (yes)

-Look for slippage of logs (no slippage)

-Check if anything moved (no)

Sine Burst: No Slippage

Paris Cal Mtg. 14-16 Feb 2000

Naval Research Lab Washington DC

GLAST Custom PIN diode

Bernard Phlips
Naval Research Laboratory

PIN diode Design and Specifications

Paris Cal Mtg. 14-16 Feb 2000

- Two diodes, 96mm², 24mm²
- Single ceramic carrier
- Thin silicon (180 micron) (silicon really 280 micron)
- 30V bias

34

- Large Pin capacitance 75pF mean, 150pF (90 pF) max
- Small Pin capacitance 20 pF mean, 40 pF (25 pF) max
- Large Pin dark current 1.5 nA mean, 5nA max
- Small Pin dark current 0.5 nA mean, 1.5 nA max

Front (Optical) Face of PIN

Naval Research Lab Washington DC

Manufactured Diodes

Paris Cal Mtg. 14-16 Feb 2000

Pin diode performance:

- mechanically to spec.
- 40 v operation
- Large Pin capacitance mean 66.6 pF, range: 65.7 pF to 67.0 pF
- Small Pin capacitance mean 21 pF, range: 20.0 pF to 21.8 pF
- Large Pin leakage current 1.5 nA mean, range: 0.5 nA to 5 nA
- Small Pin leakage current 0.7 nA mean, range: 0.2 nA to 1.5 nA

Dark Current vs Temperature

Paris Cal Mtg. 14-16 Feb 2000

Direct Energy in Diode

Paris Cal Mtg. 14-16 Feb 2000

When charged particle crosses Pin diode, energy is deposited (tracker).

At normal incidence:

- for 180 micron, 42 mg of material,
 - => ~ 80 keV deposited
- create ~ 22 000 electrons
- -interpreted as ~ 7 MeV in CsI
- -most likely relevant at ~ 45 degrees
 - => looks like ~ 10 MeV in CsI
- -comparable to energy deposited in CsI (if in middle of diode)

Pin diode surface

Paris Cal Mtg. 14-16 Feb 2000

GLAST Calorimeter

Diode surface is not flat:

- the ceramic well is filled with an optically clear material
- when it cures, there is curvature
- this must be filled with epoxy
- epoxy cannot interact with Hamamatsu's coating
- -we used Epotek 301
- have noticed reaction on crystal side
- => probably need thicker layer of epoxy
- -need to account for temperature gradients for flight (50 degree C)
- -should consider Sylgard
- -we did not use it because it did not stick to CsI as well

Naval Research Lab Washington DC